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A Mathematical Statistics Formulation of the Teleseismic Explosion

Identification Problem with Multiple Discriminants

by D. N. Anderson, D. K. Fagan, M. A. Tinker, G. D. Kraft, and K. D. Hutchenson

Abstract Seismic monitoring for underground nuclear explosions answers three
questions for all global seismic activity: Where is the seismic event located? What
is the event source type (event identification)? If the event is an explosion, what is
the yield? The answers to these questions involves processing seismometer wave-
forms with propagation paths predominately in the mantle. Four discriminants com-
monly used to identify teleseismic events are depth from travel time, presence of
long-period surface energy (mb vs. MS), depth from reflective phases, and polarity
of first motion. The seismic theory for these discriminants is well established in the
literature (see, for example, Blandford [1982] and Pomeroy et al. [1982]). However,
the physical basis of each has not been formally integrated into probability models
to account for statistical error and provide discriminant calculations appropriate, in
general, for multidimensional event identification. This article develops a mathe-
matical statistics formulation of these discriminants and offers a novel approach to
multidimensional discrimination that is readily extensible to other discriminants. For
each discriminant a probability model is formulated under a general null hypothesis
of H0: Explosion Characteristics. The veracity of the hypothesized model is measured
with a p-value calculation (see Freedman et al. [1991] and Stuart et al. [1994]) that
can be filtered to be approximately normally distributed and is in the range [0, 1]. A
value near zero rejects H0 and a moderate to large value indicates consistency with
H0. The hypothesis test formulation ensures that seismic phenomenology is tied to
the interpretation of the p-value. These p-values are then embedded into a multidis-
criminant algorithm that is developed from regularized discrimination methods pro-
posed by DiPillo (1976), Smidt and McDonald (1976), and Friedman (1989). Per-
formance of the methods is demonstrated with 102 teleseismic events with
magnitudes (mb) ranging from 5 to 6.5. Example p-value calculations are given for
two of these events.

Introduction

Data-processing algorithms used to identify teleseismic
events have historically been rule-based formulations of
seismic phenomenology that emulate the logic of experi-
enced seismic analysts (see Dahlman and Israelson [1977]).
A recent contribution is an event-filtering method for re-
gional measurements developed by Fisk et al. (1996). Here,
event filtering is fundamentally outlier detection and not
event identification. It has no mathematical capability to ad-
dress covariance matrix instability with colinear discrimi-
nants or to perform event identification analysis with missing
discriminants. Event filtering is not expressly designed to
combine regional and teleseismic discriminants or to make
use of binary-based (yes/no) discriminants. The technical de-
velopment in this article addresses all of these issues.

The contribution of this article is the integration of seis-

mic physical theory into probability models designed to cap-
ture significant sources of error and the development of a
mathematical statistics formulation of rule-based event iden-
tification. For each discriminant a hypothesis test is formu-
lated under a general null hypothesis of H0: Explosion Char-
acteristics. For example, a depth null hypothesis under
Explosion Characteristics might be H0: event depth � 10 km
with the logical alternative hypothesis HA: event depth
� 10 km. The veracity of the null hypothesis for each dis-
criminant is measured with a p-value calculation. With this
approach to discriminant construction, the p-value carries
information about source type fully adjusted for natural and
measurement variability. p-values can be viewed as stan-
dardized discriminants with common interpretation across
geographical regions and different discriminants. This places
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Figure 1. The arcsine transformation to induce an approximate normal distribution
on individual p-values (standardized discriminants). The probability distribution under
the null hypothesis H0 is gray and the probability distribution under an alternative
hypothesis HA is black.

a high standard on the construction of the discriminants—
seismic phenomenology must be integrated into an appro-
priate probability model and a seismic-based hypothesis test
constructed.

A p-value has very subtle, but important interpretations.
A p-value is not the probability that the null hypothesis is
correct—it is, in fact, calculated assuming H0 is true. Under
this assumption, a p-value is the chance of randomly ob-
serving evidence against the null hypothesis at least as strong
as the observed discriminant (Freedman et al., 1991). For
clarity of technical presentation, a p-value may be inter-
preted as “a measure of evidence against the null hypothe-
sis.” This is the case when presenting the analysis of several
discriminants in one ensemble. Because a p-value is derived
from an observed discriminant, it is also a discriminant.
Precedence for interpreting p-values as discrimination fea-
tures can be found in Maharaj (2000) and Dümbgen and
Hömke (2000).

The p-values are filtered to have an approximate normal
distribution with

2
Y � arcsin p-value. (1)�

p

We call Y a standardized discriminant also with common
interpretation across geographical regions and different dis-
criminants. This filter is well established in mathematical
statistics literature (Fisher, 1936; Freeman and Tukey, 1950;
Fisher, 1954). A plot of Y versus p (p-value) is given in
Figure 1. The transformation maps 0.9 to 0.8. It maps 0.2 to
0.3 and 0.02 to about 0.1. Y retains the common interpreta-
tion of the individual p-values and is simply approximately
normally distributed. In a later section, standardized discrim-
inants are mathematically aggregated with a multivariate
normal (MVN) discrimination method to give a source iden-
tification; that is, observed high-quality discriminants for an
event are evaluated for consistency with historical data from
each source type. With this approach an event can be de-
clared:

• consistent with historical explosions,
• consistent with historical earthquakes,

• consistent with both historical explosions and earthquakes
(indeterminate), or

• not consistent with either historical explosions or earth-
quakes (unidentified).

An important property of MVN discrimination methods
is the ability to adapt to different combinations of observed
discriminants. For example, data quality requirements may
exclude the use of some discriminants in an identification
analysis. Data quality, as measured for example by signal-
to-noise and focal sphere coverage, is a prerequisite to in-
clude a discriminant in an identification analysis. Otherwise
the discriminant is excluded. MVN discrimination readily
adapts to this important component of data processing and
offers an event identification that is fully consistent with
seismic-discrimination logic.

In the next section, p-value equations for depth from
travel time, presence of long-period surface energy (mb vs.
MS), depth from reflective phases, and polarity of first mo-
tion are developed. Example p-value calculations are pro-
vided for two teleseismic events: a magnitude 5.39 earth-
quake in the Andes mountain range of Argentina (event A)
and a magnitude 5.32 earthquake near the Uzbekistan/Turk-
menistan border (event B). 100 additional teleseismic events
are used in a performance analysis of the developed multi-
discriminant method. This analysis is presented in a later
section. The raw waveform data for these events are reserved
for official use of the U.S. government, but the summary of
an analysis of the standardized discriminants has been ap-
proved for open distribution. The 102 events include three
source types: 44 explosions (EX), 28 shallow earthquakes
(SEQ) (roughly depth less than 50 km), and 30 deep earth-
quakes (DEQ) (roughly depth greater than 100 km). Figure 2
shows the location, source type, and magnitude of these
events. The utility of p-values converted to standardized
seismic discriminants for multidiscriminant identification is
a core focus of the article; therefore, well-established signal-
processing analysis is not presented.

Discriminant Formulation

A hypothesis test is essentially inference by contradic-
tion. A null hypothesis is assumed true and the assumption
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Figure 2. Location, source type, and magnitude of teleseismic events used in anal-
ysis. The source-type symbols are red stars for explosions (EX), green dots for shallow
earthquakes (SEQ), and yellow dots for deep earthquakes (DEQ). SEQ is defined as
earthquakes approximately 50 km in depth or less. DEQ is defined as earthquakes
approximately 100 km in depth or more. Events magnitudes (mb) range from 5 to 6.5.

does not change unless data sufficiently contradict it. In this
seismic context, the probability model of a seismic discrim-
inant, indicative of an explosion source characteristic, is as-
sumed true (the null hypothesis H0). The mathematics of
hypothesis test construction provides a test statistic, a nu-
merical calculation with data to assess the veracity of the
null hypothesis. For example, if a depth discriminant is sta-
tistically inconsistent with H0: event depth � 10 km, then
the p-value and associated standardized discriminant will be
small and H0 is rejected.

Depth from P-Wave Arrival Times

Location estimation as a discriminant is intuitive and
logically simple. The combined costs and limitations of min-
ing and drilling technology make deep underground nuclear
explosions (deeper than 5 km) very unlikely. Let t0 denote
the origin time of the seismic disturbance and let ti denote
the arrival time of the P-wave at seismometer i. S0 � (X0,
Y0, Z0)� (epicenter and depth) is the location of the seismic
event and Si is the location of seismometer i. Estimates of
the unknown quantities t0 and S0 are desired. With an ap-

propriate theoretical travel-time function T(•), we have the
relationship

(t � t ) � T(S , S ) � error. (2)i 0 i 0

Here, error is often modeled as normally distributed and un-
correlated across stations with common variances that are
possibly adjusted by station-specific weights. If at least four
seismograms with good azimuthal coverage are associated
with a seismic disturbance, the estimation of the quantities
t0 and S0 is a maximum likelihood estimation (MLE) calcu-
lation, and there are various solvers to obtain these MLEs.

The depth discriminant is mathematically formulated
with the hypotheses H0: Z0 � z0, where z0 is some predeter-
mined threshold. Equation (2), describing observed arrival
time and modeled arrival time as a function of latitude, lon-
gitude, depth ((X0, Y0, Z0)� � S0), and origin time (t0), can
be written as an equation of error ei � (ti � t0) � T (Si,
S0). If the ei for an event formed from n stations is modeled
as an uncorrelated (independent) normal random variable
with variance , then theory gives the joint probability2ri

model of the residuals e1, e2, . . ., en as the product of the
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Figure 3. p-value calculation for the depth from
P-wave arrival-times discriminant.

marginal normal density functions for e1, e2, . . ., en. The
argument ei in the density functions is then replaced with
((ti � t0) � T (Si, S0)), giving the joint probability model
of the observed arrival times ti, i � 1, 2, . . ., n. This sub-
stitution makes the joint probability model a function of the
hypocenter and origin-time parameters and mathematically
links the arrival times to these parameters. The joint proba-
bility model for ti, i � 1, 2, . . ., n can then be used to obtain
MLEs of S0 and t0 (denoted ŝ0 and t̂0). Conceptually, the
MLEs fit a model such that the likelihood of obtaining the
data ti, i � 1, 2, . . ., n is a maximum.

In the normal distribution case, obtaining maximum
likelihood estimates simplifies to minimizing the nonlinear
least-squares function

n 2t � t � T(S , S )i 0 i 0SSE(S , t ) � . (3)0 0 �� �ri�1 i

Allowing all parameters S0 and t0 to float freely when min-
imizing SSE (S0, t0) gives the minimum value SSE(ŝ0, t̂0). If
depth is constrained to be Z0 � z0, then the minimum sum
of squared residuals is SSE(ŝ0, t̂0 | Z0 � z0). Theory (see
Seber and Wild [1989] and Searle [1971]) shows that if H0

is true, then the statistic

ˆ ˆSSE(ŝ , t | Z � z ) � SSE(ŝ , t )0 0 0 0 0 0F � (4)1,n�4 ˆSSE(ŝ , t )/(n � 4)0 0

has a central F-distribution with 1 and n � 4 degrees of
freedom. Conceptually, equation (4) states that Z0 � z0 is
consistent with the data ti, i � 1, 2, . . ., n unless the differ-
ence SSE(ŝ0, t̂0 | Z0 � z0) � SSE(ŝ0, t̂0) is large relative to
SSE(ŝ0, t̂0)/(n � 4).

The hypothesis H0 has directionality: that is, a test is
needed that determines if H0: Z0 � z0 is consistent with the
data. Theory (see Stuart and Ord [1994]) shows that if H0 is
true, then the statistic

T � sign(ẑ � z ) F (5)�n�4 0 0 1,n�4

has a central Student’s t-distribution with n � 4 degrees of
freedom. ẑ0 is the MLE for Z0 in equation (5). Large values
of Tn�4 are inconsistent with H0; therefore, the p-value is
simply the right tail probability calculated from the observed
value of Tn�4 (see Fig. 3). A small p-value implies a large
observed Tn�4, which leads to the inference that the event
data contradict the explosion H0. A large p-value implies a
small observed Tn�4, which leads to the conclusion that the
event data are consistent with the explosion H0.

The formulation of equations (3), (4), and (5) is more
intuitive than the mathematically detailed development.
What might not be clear is that these equations account for
the the effect of station configuration on the stability of or-
igin time and depth, as expressed through the travel-time
model. The theory used in equations (3), (4), and (5) is based

on a linear (Taylor’s series) approximation to T(Si, S0). To
demonstrate that station configuration is integral to hypo-
center estimation, write the basic arrival-time model as

t � t � T(S , S ) � ei 0 i 0 i (6)
� F(t , S , S ,) � e � F(h , S ,) � e .0 0 i i 0 i i

Expanding equation (6) with a Taylor’s series around the
true parameter values h0 gives

��
t � F(_h , S ,) � F(h, S ,) (_h � h ) � e , (7)i 0 i i 0 i� ��h h�h0

which can be written as

r (_h ) � A (_h )�(_h � _h ) � e . (8)i 0 i 0 0 i

Now take a best guess for the true value of h0 and substitute
into equation (8). The result is a linear regression model with
unknown fit parameters h. This regression model gives re-
vised values for h0 as the regression fits of the parameters h,
and the process is repeated. When there is little change in
h0 and h from iteration to iteration, then the resulting values
of h are hypocenter and origin-time MLEs (a solution to the
nonlinear least-squares formulation equation 3). Because the
parameter estimates can be locally formulated as a linear
model, linear theory is applied (equations 4 and 5). Equation
(8) demonstrates that station configuration is always bound
into this theory through the velocity model matrix formed
from the station velocity vector Ai(h0).

Example. The hypocenter for event A was defined by n
� 21 stations. The free-depth solution is ẑ0 � 170 km and
SSE(ŝ0, t̂0) � 9.93. For the fixed-depth solution of the hy-
pothesis H0: Z0 � 50 km, SSE(ŝ0, t̂0 | Z0 � 50) � 132.50.
The F-statistic is then F1,17 � (132.50 � 9.93)/(9.93/17) �
209.84, which gives a T-statistic of T17 � sign(170 � 50)

� 14.49, where the subscript denotes degrees of209.84�
freedom. This statistic gives a p-value of essentially 0—the
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Figure 4. p-value calculation for the P-wave sur-
face reflections discriminant. The joint probability
model for stepout and number of observed pP is in-
tegrated over the dark-gray region and subtracted
from one, giving the p-value.

event is confidently deep. The hypocenter for event B was
defined by n � 23 stations. The free-depth solution is ẑ0 �
0.50 km and SSE(ŝ0, t̂0) � 6.78. For the fixed-depth solution
of the hypothesis H0: Z0 � 50 km, SSE(ŝ0, t̂0 | Z0 � 50) �
9.72. The F-statistic is then F1,19 � (9.72 � 6.78)/(6.78/19)
� 8.24, which gives the T-statistic T19 � sign(0.5 � 50)

� �2.87 and a p-value of 0.995—strong indication8.24�
that the event is shallow.

Observed P-Wave Surface Reflections

A reliable depth estimate can be obtained from the dif-
ference in arrival times of the compression waves P and pP
(see, for example, Woodgold [1999]). The time difference
between the arrival of P and pP waves (dtpP � tpP � tP) is
a function of the depth of the seismic source and the epi-
central distance (D) from the source to the seismometer. dtpP

is predominantly dependent on the depth of a seismic dis-
turbance when the focus is less than approximately 100 km
deep.

Identification of reflected waves can be a very difficult
problem, and in general it requires the presence of candidate
pP waves at several stations to establish that waves are, in
fact, reflected waves. A key feature of confident depth-phase
observation is observed stepout for pP waves. For an event,
stepout is the observed change in dtpP from the nearest sta-
tion to the farthest station. Physical phenomenology implies
it is highly unlikely that observed reflected waves of high
quality (good signal-to-noise ratio and azimuthal distribu-
tion) could exhibit stepout if those waves were not correctly
associated depth waves. Scenarios where this claim fails in-
clude events that are analyzed with an inadequate earth
model or spurious associations. Should observed dtpP for the
closest and farthest seismometers be systematically differ-
ent, then stepout is indicated and the event is deep. Two
formulations of the P-wave surface reflection discriminant
follow.

Order Statistics Formulation. Developing a mathematical
formulation for this discriminant, and associated hypothesis
H0 and p-value, requires that statistics theory defer to physi-
cal basis. The statistical formulation of the discriminant is
a compound probability distribution of two measurements:
(1) the number of observed depth phases (number of ob-
served pP) from an event and (2) a measurement of stepout.
In combination, the two measurements indicate high confi-
dence (or not) in the observation of depth phases. The null
hypothesis is H0: No observed pP (Explosion Characteris-
tics). Inconsistency with H0 is indicated when the number
of observed pP is large or observed stepout is large. As will
be demonstrated, this formulation will give a small p-value
when good-quality depth phases are seen; however, solid
inconsistency with H0 additionally requires observed ste-
pout. For example, the formulation provides a small p-value
with only two observed pP and strong stepout. In contrast,
many observed pP with weak stepout gives a moderate p-

value and only marginal inconsistency with H0. The p-value
concept is illustrated in Figure 4.

The joint probability model of the number of observed
pP phases and stepout is developed as the product of two
component probabilities P(N � i) � P(R � r | N � i),
where

• N is the number of observed pP and
• R equals the difference between dtpP from the farthest sta-

tion and dtpP from the closest station (observed stepout).

Under H0 the number of observed pP will be zero or
extremely small (from spurious picks). A probability model
often used for rare events is the Poisson distribution

i �gg e
P(N � i) � ; i � 1, 2, K . (9)

i!

Here g is conceptually the expected number of spurious pP
picks from numerous event waveforms. Under H0 the dis-
tribution of the dtpP from an event are modeled with the
cumulative distribution function (CDF) U(•) and probability
density function (PDF) �(•). Note that the calculation of R
is, for all practical purposes, equal to Max(dtpP) � Min(dtpP)
and is assumed to be so in this development. For very shal-
low events, or poorly associated events, R can be negative—
in these cases it is set equal to zero. With the assumption
that R is equivalent to Max(dtpP) � Min(dtpP), its probability
model can be derived as a function of the smallest- and
largest-order statistics, Max(dtpP) and Min(dtpP). Order sta-
tistics theory develops the probability distributions of func-
tions of ordered random variables. For example, the smallest
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value from a random sample will exceed some fixed number
if and only if all exceed the number, so the probability that
the smallest exceeds this number equals the probability that
all exceed the number. A calculation of R clearly requires at
least two pP picks, and if this is the case, the distribution of
R is given in Stuart and Ord (1994), as

�

P(R � r | N � i) � i (U(m � r)�
��

i�1� U(m)) �(m)dm r � 0; i � 1, 2, K . (10)

As discussed in the introduction, a statistical test of hypoth-
esis is essentially inference by contradiction: H0 is assumed
true until it is proved false. With this reasoning, P(R � r |
N � 0) � 1 because no observed pP is consistent with H0.
Strong inconsistency with H0 requires a measure of stepout.
With the same reasoning as previously, if only one pP is
observed, then again P(R � r | N � 1) � 1. Referring to
Figure 4, for n observed pP picks and an observed stepout
of r, the p-value is then calculated as

p-value � 1 � P(N � n, R � r) �
n1 � P(N � i) � P(R � r | N � i), (11)�i�1

where P(R � r | N � i) � 1, i � 0, 1, and P(R � r | N �
i) � 0, r � 0.

Simple Linear Regression Formulation. A P-wave surface
reflection discriminant can be alternatively based on a simple
linear regression (SLR) of dtpP as a function of epicentral
angle D. Kraft (1999) proposed a regression analysis with a
test of significance on the regression slope to determine
whether stepout is present in the pP picks. We build on this
approach by extending to a centered SLR formulation (see
Stuart et al. [1994]), inducing statistical independence on
the slope and intercept estimates. p-values can be calculated
for significance tests on the slope and intercept. These two
p-values are statistically independent because the slope and
intercept estimates are independent. With the slope and in-
tercept p-values, a compound hypothesis test with associated
single p-value can be constructed on the strength of observed
P-wave surface reflections. In this formulation the SLR in-
tercept has a strong functional relationship with event depth
and the SLR slope provides a statistical measure of stepout.

For station i, the centered SLR model for and Di isdtpPi

˜ln(dt ) � b � b ln(D /D) � e , (12)pP 0 1 i ii

where is the geometric average of the epicentral distancesD̃
between stations i � 1, 2, . . ., n, and ei are independent and
identical normal random variables with mean zero and con-
stant variance r2. Taking the logarithm of the and epi-dtpPi

central distance Di improves the linear behavior in the data.
The SLR estimates of b0 and b1 are statistically independent

under the formulation in equation (12). b0 � log ( ) atdtpPi

the distance and so b0 has a direct relationship to˜D � Di

event depth Z0 at this distance—if b0 is relatively large, then
significant depth is indicated.

The Explosion Characteristics null hypothesis is H0: b0

� b0 and b1 � b1. The b0- and b1-values are determined
from minimum-depth natural events with clearly observable
stepout and P-wave surface reflections. The test statistics are

b̂ � bj jT � j � 0, 1 (13)b ,n�2j SEb̂j

where is the standard error of the regression estimateSEb̂j

. follows a Student’s t-distribution with n � 2 de-b̂ Tj b ,n�2j

grees of freedom. The p-value for both tests ( ) is thep , pb b0 1

area to the right of (equivalent to Fig. 3 with n � 2Tb ,n�2j

degrees of freedom rather than n � 4).
If H0: b0 � b0 and b1 � b1 is true, then and arep pb b0 1

independent uniform random variables, thus 2v � �2
is a chi-squared random variable with 2ln(p ) �2 ln(p )b b0 1

degrees of freedom (see Stuart and Ord [1994]). Finally, the
SLR formulation p-value is equation (14), where u(v; 2) is
the chi-squared PDF with 2 degrees of freedom.

�

p-value � u(m; 2)dm. (14)�2v

Example. We model the stepout CDF (U(•)) and PDF (�(•))
in equation (10) as normally distributed with mean 1 and
standard deviation 0.5. These values are reasonably consis-
tent with the travel-time table of dtpP at depths less than
30 km. The Poisson parameter is modeled with g � 1. For
these parameter values, graphs of the p-value (equation 11)
as a function of R � r and N � {4, 2} is presented in Fig-
ure 5. Event A has four waveforms with observed dtpP �
(42.25, 43.30, 42.95, 43.65) and associated epicentral dis-
tances D � (67.20, 68.63, 80.81, 88.92). The stepout value
is r � 43.65 � 42.25 � 1.4. Referring to Figure 5, the
order statistics p-value is less than 0.025—the event is con-
fidently deep.

To illustrate the hypothesis formulation of a depth
greater than 30 km, the regression model equation (12) is
applied to the travel-time table of dtpP corresponding to a
depth of approximately 80 km. This regression fit gives val-
ues of b0 � 3.10 and b1 � 0.15 for hypothesis statements
H0: b0 � b0 and b1 � b1. Direct application of the regression
model equation (12) to the event A data gives �(p , p )b b0 1

(0.09, 0.86). These two values are brought together with
which gives a p-value of2v � �2 ln(p ) � 2 ln(p )b b0 1

0.08 (equation 14). The individual regression tests indicate
significant depth but weak stepout, but the event is still con-
fidently deep when both p-values are combined.

Event B has two waveforms with observed dtpP �
(3.70, 3.70) and associated epicentral distances D � (69.07,
77.13). The stepout value is r � 0. Referring to Figure 5,
the order statistics p-value is 0.28, evidence that the event
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Figure 5. P-wave surface reflections discriminant p-value as a function of R � r
for N � {4.2}. The graphs correspond to the example for the order statistic formulation.

Figure 6. p-value calculation for the mb versus MS

discriminant.

is shallow. With only two observed dtpP, the regression
model for this event cannot be used and, in this case, the P-
wave surface reflection discriminant is simply turned off (de-
tails to follow).

The mb versus MS Discriminant

The mb versus MS discriminant is mature (see Evernden
[1975] and Blandford [1982]) and requires no development
for inclusion in the multidiscriminant methods developed in
this article. In practice, this discriminant is formed from the
difference of station-averaged surface-wave and body-wave
magnitudes, m̃b and M̃S. The null hypothesis is H0: m̃b �
M̃S � m0, where m0 is a predetermined threshold and is, in
fact, the average of (m̃b � M̃S) for a historical collection of
calibration explosions. The test statistic is

˜(m̃ � M ) � mb S 0Z � . (15)
r 1 /n � 1 /n ˜� m̃ Mb S

The common source-type variance (r2) for mb and MS in the
denominator is calculated from combined explosion and
earthquake calibration data and is assumed known. From
established statistical theory, the test statistic has a standard
normal distribution. Extreme negative values of Z are incon-
sistent with H0; therefore, the p-value is simply the left-tail
probability of a standard normal distribution calculated from
the observed value of Z (Fig. 6). A small p-value, calculated
from an extreme negative value of Z, leads to the inference
shallow earthquake (SEQ). A large p-value implies explosion
(EX) or deep earthquake (DEQ).

Example. For event A, Z � 1.13 which gives a p-value
of 0.13—the event has some surface-wave energy, but the
magnitude of the p-value in this application indicates mar-
ginal support for H0. As a single discriminant, a moderate
to large mb versus MS p-value supports both a deep earth-
quake and explosion as the source type. For event A, the
hypocenter depth discriminant gave a p-value that strongly
rejected the hypothesis that the event is shallow. In combi-
nation, these two p-values are strong evidence that event A

is a deep earthquake. For event B, Z � 19.32, which gives
a p-value of essentially 0, strong evidence, accounting for
random error, that the event has strong surface-wave energy.

Polarity of First Motion Discriminant

Excluding pathological cases, a seismogram from an
underground explosion exhibits the initial earth movement
of the P-wave as upward or positive, regardless of the lo-
cation of the seismometer. In contrast, an earthquake is
caused by relative movements of adjacent blocks of the earth
due to tectonic forces. As a discriminant, if the polarity of
first motion is negative at some stations, then the seismic
disturbance is unlikely to be an explosion. If the polarity of
first motion is positive at all stations, then the seismic dis-
turbance might be the result of an explosion. The ambiguity
under unanimous positive first motion is potentially caused
by an inadequate distribution of seismic stations (e.g., no
earthquake P-waves with negative first-motion in areas with
seismic-network coverage) or poor signal-to-noise ratio (in-
ability to observe the P-wave signal because it is too small
compared with background noise).

With good signal-to-noise ratios at each station the po-
larity of first arrival is usually correctly identified, but it can
be mistaken. Uncertainty in identifying first-arrival polarity
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motivates the statistical construction of the discriminant. The
null hypothesis is H0: The source mechanism is single-point
explosive. Under H0, the probability of positive first motion
at a station is composed of two component probabilities: the
probability of positive first motion from the source and the
probability that first-motion polarity is correctly determined
given positive first motion from the source.

The first component equals one under H0. There may
be pathological cases where this is not true; however, they
are assumed negligible for this development. The second
component probability is governed by many factors includ-
ing signal-to-noise ratio and analyst training and experience,
all influencing an accurate P-arrival pick. For this develop-
ment, with good signal-to-noise ratios at all stations, this
probability is modeled as a constant. This reasoning is suc-
cinctly summarized as

P(� first motion observed at a station)
� P(� first motion from source) (16)

� P(first-motion polarity correctly identified |
� first motion from source) � 1 � h.

From this formulation, there will be a positive first motion
(or not) at each station—a binary random variable with P(�
first motion observed at a station) � h. Assume that stations
are probabilistically independent. Therefore, for M stations
forming an event, the number of stations (N � n) under H0

that have positive first motion has a binomial distribution
with parameters M and h. For observed N � n, the p-value
is simply the binomial cumulative distribution function

Mn i M�ip-value � h (1 � h)�i�0� �i
n � 0, 1, 2, K , N . (17)

The parameter P(� first motion observed at a station)
� h will be nearly one under H0. However, this discriminant
should be excluded from an identification analysis if first
motion is identified positive at all stations—the polarity of
first-motion discriminant is fundamentally an explosion re-
jector. Events with good signal-to-noise ratios and a suffi-
cient number of stations with negative first motion confi-
dently indicate earthquake.

Example. Under the null hypothesis H0: The source mech-
anism is single-point explosive, we model h � P(� first
motion observed at a station) equal to 0.95. For this param-
eter value, plots of the p-value (equation 17) versus N � n
are given in Figure 7 for M � {6, 7}. Event A has six
waveforms with good first-motion signal to noise, two of
which are positive first motion. Referring to Figure 7, M �
6 and n � 2 gives a p-value � 0—the event is confidently
an earthquake. Event B has seven waveforms with good first-
motion signal to noise with six as positive. With M � 7 and
n � 6, the p-value is � 0.3; there is evidence the event is
an earthquake, but given the uncertainty in accurately pick-

ing first motion, the p-value does not reject the explosion
hypothesis.

Identification with Multiple Discriminant Analysis

A multivariate normal (MVN) or likelihood-based ap-
proach to aggregating discriminants provides a rigorous
method to properly account for correlations and provides
mathematical formalism to account for physical basis. For
illustration, denote the MVN explosion and earthquake mod-
els for standardized discriminants Y � y (see equation 1) as
MVN(lX, RX) and MVN(lQ, RQ), respectively. Here, l(•) and
R(•) are the mean vectors and covariances for the models.
The PDFs are denoted fX(y) and fQ(y). The intuition of like-
lihood-based identification is quite simple. If, for standard-
ized discriminants Y � y, fX(y) is close to zero, then the
discriminants are in the tail of the explosion density and
inconsistent with explosions. Large fX(y) indicates the dis-
criminants are well into the body of the explosion density
and consistent with explosions. Analogous reasoning holds
for earthquakes. Mean vectors and covariances are estimated
with explosion and earthquake calibration data. Anderson
and Taylor (2002) demonstrate the application of likelihood-
based discrimination (regularized discrimination analysis
[RDA]) to regionally observed events. The fundamental in-
tuition of likelihood-based discrimination is illustrated in
Figure 8.

RDA, proposed by Friedman (1989), is a method of dis-
crimination to address applications with highly correlated
discriminants Y and small calibration samples for some
sources. The RDA covariance for the kth source type in-
volves the construction of a weighted-average covariance
matrix

S (c) � (1 � c)S � cS; c � [0, 1]. (18)k k

Here, Sk is the covariance matrix for the kth source, and S is
the pooled covariance matrix. Note that Sk may be singular
due to a few calibration events or because of strongly cor-
related discriminants for the kth source. Sk(c � 0) is com-
puted from the kth source data alone and Sk(c � 1) is a
pooled covariance. RDA uses a two-parameter formulation
of a covariance matrix in forming discrimination rules. See
Anderson and Taylor (2002) for a discussion of RDA in the
context of seismic monitoring. With Sk(c) defined above, the
RDA covariance matrix is

˜ (k, c) � (1 � k)S (c)�k k

tr(S (c))k
� k I; k � [0, 1], (19)

�

where k can be used to parametrically smooth Sk(c) to a
spherical covariance model. The denominator � in the sec-
ond term is the number of discriminants. Inherent in likeli-
hood discrimination is the concept that events unusual with
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Figure 7. Polarity of first-motion discriminant p-value as a function of the number
of stations (N � n) that have positive first motion for M � {6, 7}. The graphs cor-
respond to the example given in the text.

historical source data are flagged for further analysis. This
means that an event with individual standardized discrimi-
nants that strongly indicate explosion can be flagged for fur-
ther analysis if, in the aggregate, the discriminants are in-
consistent with a historical explosion model. This property
also implies that unusual natural events may be flagged for
further analysis. Events that are in fact natural, yet inconsis-
tent with all calibrated sources (unidentified), may be a new
source type and appropriately merit further analysis.

Mahalanobis Distance and the Typicality Index

McLachlan (1992) describes the use of a typicality in-
dex to determine whether discriminants are consistent with
a source type. Typicality indexes are essentially an aggre-
gate-discriminant p-value derived from a Mahalanobis dis-
tance. A Mahalanobis distance between a point Y and the
mean of a source is the Euclidean distance scaled by the
source-specific covariance. For the kth source type, in one
dimension, it is the squared z-score

2Y � lk2z � .k � �rk

Let Y have dimensions � � 1, where � is the number
of discriminants used in an event identification analysis. Un-
der the MVN assumption, and assuming that k is the true
source, the Mahalanobis distance has an approximate chi-
squared distribution with � degrees of freedom, and the typ-
icality index is simply the computed p-value for this hy-
pothesis pk-aggregate. Intuitively, a small Mahalanobis
distance means that the observed point Y is well within the
kth source model, which translates to a large pk-aggregate.
Conversely, if the distance is large, the observed point Y is
extreme to a source model, which translates to a small pk-
aggregate.

pk-aggregate can be viewed intuitively as a degree of
membership/agreement for the kth source type, and in this
light it has a very natural and easily understood interpreta-
tion. The Mahalanobis distance (equation 20) and associated
pk-aggregate (equation 21) are

˜2 �1v � (Y � l )� (k, c) (Y � l ), (20)_ _ _ _k k �k k

�

p -aggregate � u(m; �)dm, (21)k �2vk

where the matrix superscript �1 denotes matrix inversion.
In equation (21), u(m; �) is the chi-squared probability den-
sity function with � degrees of freedom. The pk-aggregate
calculation is illustrated in Figure 9.

The conceptual intent of typicality indexes calculated
with event data Y is to determine whether the event is con-
sistent (or not) with historical data from each source type.
In addition to combined support for a single source, this
approach to aggregation provides technically defensible evi-
dence for indeterminate (evidence in support of an explosion
and at least one other source) or unidentified (evidence
against all sources currently in the framework).

Excluding Discriminants

A mathematical mechanism is needed to remove low-
quality or unobserved discriminants from an event analysis.
MVN identification provides a clean solution by using simple
multivariate mathematical statistics. The estimated covari-
ance matrix and centroid for each source is and .˜ ˜� (k, c) l_k k

If A is a q � � matrix with q � � and rank equal to q, then
the covariance and centroid of AY is simply ˜A� (k, c)A�k

and (see Stuart and Ord [1994]). Suppose for an event,˜Al_k

Y � (Y1, Y2, Y3, Y4)� and that data-quality requirements are
not satisfied for Y3 and Y4. Form the matrix A �

. The calculations and give the1 0 0 0 ˜ ˜A� (k, c)A� Al_k k� �0 1 0 0
source covariances and centroids for the reduced vector of
discriminants Y � (Y1, Y2)�. These covariances and centroids
are then used in the identification analysis. Construction of
the matrix A is clear. If only q of the � discriminants in the
framework can be used in identification analysis, then A will
have q rows. A always has � columns. In each row, a single
1 is placed in a position to select a discriminant, and zero is
placed elsewhere. Requiring A to have rank q ensures that
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Figure 8. Intuition of likelihood-based seismic identification. Population member-
ship defines four possible identification statements: Explosion, Earthquake, Indeter-
minate, and Unidentified.

the rows in A uniquely select a single discriminant to be used
in the analysis.

Example. Individual discriminant p-values for 102 tele-
seismic events demonstrate the performance of the devel-
oped multidiscriminant method. All 102 events were used
to calculate the source covariance matrices and centroids for
discriminants Y. The RDA parameters k and c were selected
to optimize identification performance with the full data set
(see Anderson and Taylor [2002] and Friedman [1989]). For
the observed P-wave surface reflections discriminant, the re-

gression formulation was used to calculate p-values. The
null hypothesis values z0, b0 and b1, m0, and model parameter
h � P(� first motion observed at a station) are for official
use of the U.S. government and are not reported.

Performance is presented in Table 1. Of the nine inde-
terminate explosions, eight had depth from travel time as the
only discriminant and are therefore indistinguishable from
shallow earthquakes. The other indeterminate explosion had
depth from travel time and mb versus MS as discriminants
with typicality indices of pEX-aggregate � 0.542, pSEQ-
aggregate � 0.184, and pDEQ-aggregate � 0.162. For this
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Figure 9. The shaded area is the pk-aggregate
value.

Table 1
Performance of MVN (RDA) Discrimination with Standardized

Discriminants

EX SEQ DEQ I U

EX 35 0 0 9 0
SEQ 0 27 0 1 0
DEQ 0 0 30 0 0

The possible identification decisions are explosion (EX), shallow earth-
quake (SEQ), deep earthquake (DEQ), indeterminate (I) and unidentified
(U). Performance is apparent, that is, all events were used to calibrate the
EX, SEQ, and DEQ covariance matrices and centroids, and all events were
used to select optimal RDA parameters k and c.

event, there is evidence for explosion identification, but the
other two source types cannot be dismissed and the event
would require further analysis to resolve source type. The
indeterminate shallow earthquake had depth from travel time
and mb versus MS as discriminants with typicality indices of
pEX-aggregate � 0.198, pSEQ-aggregate � 0.934, and pDEQ-
aggregate � 0.003. For this event, there is evidence for both
explosion and shallow earthquake identification and the
event would require further analysis to resolve source type.
The correctly identified explosions are all based on the depth
from P-wave arrival and mb versus MS discriminants. In ad-
dition to these two discriminants, many of the correctly iden-
tified shallow earthquakes were also based on observed
P-wave surface reflections and polarity of first-motion
discriminants. This is also true of deep earthquakes. When
discriminants are missing the identification analysis is re-
duced to a lower dimension with the matrix A.

Summary

This article develops a mathematical statistics formu-
lation of rule-based teleseismic event identification. We have
developed a rigorous statistical formulation of four core tele-
seismic discriminants: depth from travel time, presence of
long-period surface energy (mb vs. MS), depth from reflective
phases, and polarity of first motion. These four discriminants

are mathematically combined into an aggregate source iden-
tification. The conceptual intent of aggregation is to deter-
mine whether observed, high-quality discriminants for an
event are consistent or not with historical data from explo-
sions or earthquakes. Thus an event can be declared consis-
tent with historical explosions, consistent with historical
earthquakes, consistent with an explosion and earthquake
(indeterminate), or not consistent with either explosion or
earthquake (unidentified). The developed mathematics read-
ily adapts to missing discriminants and offers an event iden-
tification that is fully consistent with seismic logic. With this
mathematical formulation, new discriminants can be readily
added to the event identification analysis, including region-
ally observed discriminants, by binding seismic phenome-
nology to an appropriate probability model and developing
a seismically defensible hypothesis test with associated p-
value.
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